Skip to Main Content

Paul Simmonds, Ph.D.

Paul Simmonds, Physics, MSE, Studio PortraitAssistant Professor
Office: (208) 426-3787
Lab:     (208) 426-3773


Group website


Dr. Paul Simmonds completed his Ph.D. in semiconductor physics at the University of Cambridge, where he worked with Profs. David Ritchie and Michael Pepper. His research focused on the growth of thin III-V semiconductor films and nanostructures by molecular beam epitaxy (MBE) for studies of electron transport in low-dimensional, high-mobility materials. Dr. Simmonds moved to the US in 2007 to work as a postdoc, first with Prof. Christopher Palmstrøm at the University of Minnesota / University of California, Santa Barbara and then, from early 2009, at Yale University with Prof. Minjoo Larry Lee.

Dr. Simmonds’ research at Yale was chiefly based on his discovery that by using tensile strain it is possible to create III-V quantum dots on (110) and (111) surfaces, with potential significance for the fields of quantum computing and spintronics. From September 2011 to September 2014, Dr. Simmonds managed the Integrated NanoMaterials Laboratory at the University of California, Los Angeles. Working with Prof. Diana Huffaker, Dr. Simmonds oversaw research on two interconnected MBE tools configured to grow a range of different semiconductor materials for electronic and photonic applications. Dr. Simmonds was also Chair of the IEEE Photonics Society, Los Angeles Chapter.

Dr. Simmonds joined Boise State University as Assistant Professor in October 2014, with a joint appointment in the Department of Physics and the Micron School of Materials Science & Engineering. He heads the CEN (Collaboratory for Epitaxy of Nanomaterials) focusing on the MBE growth of novel semiconductor nanostructures, dissimilar materials integration, and strained thin-film heterostructures. Dr. Simmonds is a Senior Member of the IEEE.

Research Interests

Our group works at the convergence between condensed matter physics, materials science and electrical engineering. Dr. Simmonds is a firm believer in the power of interdisciplinary collaboration for solving the biggest, most important problems, and this is the spirit in which the group pursues research. Our specific research interests center on the synthesis of novel semiconductor nanomaterials and nanostructures, for example quantum dots, 2D materials, thin films and nanowires. To do this we use molecular beam epitaxy (MBE), a highly-advanced technique for growing ultrapure semiconductor crystals with atomic-level control over nanomaterial size. As our group explores these nanomaterials we gain a deeper understanding of the physics underlying their behavior. In turn, this knowledge enables us to design and engineer nanomaterials for specific applications. The nanomaterials created are used to tackle various key problems in modern physics, from quantum cryptography to spintronics.

List of Selected Publications

Book chapter: Paul J. Simmonds, “Nanomaterials Properties”, Chapter 72 (pp. 2657–2706), “Handbook of Measurement in Science and Engineering, Vol. 3”, Ed. M. Kutz, Wiley, New York (2016).


  1. Bao-Lai Liang, Ying Wang, Su-Heng Zhang, Qing-Lin Guo, Shu-Fang Wang, Guang-Sheng Fu, Paul J. Simmonds, Zhao-Qi Wang, “Optical image processing by using a photorefractive spatial soliton waveguide”, Phys. Lett. A, 381, 1207-1212 (2017)
  2. Christopher D. Yerino, Baolai Liang, Diana L Huffaker, Paul J. Simmonds, and Minjoo Larry Lee, “Review Article: Molecular beam epitaxy of lattice-matched InAlAs and InGaAs layers on InP (111)A, (111)B, and (110)”, J. Vac. Sci. Technol. B, 35, 010801 (2017)
  3. Sebastian Unsleber, Michael Deppisch, Christian M. Krammel, Minh Vo, Christopher D. Yerino, Paul J. Simmonds, Minjoo Larry Lee, Paul M. Koenraad, Christian Schneider, and Sven Höfling, “Bulk AlInAs on InP(111) as a novel material system for pure single photon emission”, Opt. Express, 24, 23198 (2016)
  4. Yoon Jung Chang, Paul J. Simmonds, Brett Beekley, Mark S. Goorsky, and Jason C. S. Woo, “Selective-area growth of heavily n–doped GaAs nanostubs on Si(001) by molecular beam epitaxy”. Appl. Phys. Lett., 108, 163106 (2016)
  5. Zhexin Zhao, Ramesh B. Laghumavarapu, Paul J. Simmonds, Haiming Ji, Baolai Liang, and Diana L. Huffaker, “Photoluminescence study of the effect of strain compensation on InAs/AlAsSb quantum dots”, J. Cryst. Growth, 425, 312 (2015)
  6. Bor-Chau Juang, Ramesh B. Laghumavarapu, Brandon J. Foggo, Paul J. Simmonds, Andrew Lin, Baolai Liang, and Diana L. Huffaker, “GaSb thermophotovoltaic cells grown on GaAs by molecular beam epitaxy using interfacial misfit arrays”. Applied Physics Letters, 106, 111101 (2015)
  7. Hai-Ming Ji, Baolai Liang, Paul J. Simmonds, Bor-Chau Juang, Tao Yang, Robert J. Young, and Diana L. Huffaker,Hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot structure with enhanced photoluminescence”. Applied Physics Letters, 106, 103104 (2015)
  8. C.D. Yerino, P.J. Simmonds, B. Liang, D. Jung, C. Schneider, S. Unsleber, M. Vo, D.L. Huffaker, S. Höfling, M. Kamp, and M.L. Lee,Strain-driven growth of GaAs(111) quantum dots with low fine structure splitting”. Appl. Phys. Lett., 105, 251901 (2014)
  9. P.J. Simmonds, M. Sun, R.B. Laghumavarapu, B. Liang, A.G. Norman, J.-W. Luo and D.L. Huffaker, “Improved quantum dot stacking for intermediate band solar cells using strain compensation”, Nanotechnology, 25, 445402 (2014) [Press].
  10. Q.L. Guo, B.L. Liang, Y. Wang, G.Y. Deng, Y.H. Jiang, S.H. Zhang, G.S. Fu, and P.J. Simmonds,Propagation characteristics of a focused laser beam in a strontium barium niobate photorefractive crystal under reverse external electric field”. Appl. Optics, 53, 6422 (2014).
  11. C.D. Yerino, P.J. Simmonds, B. Liang, V.G. Dorogan, M.E. Ware, Y.I. Mazur, D. Jung, D.L. Huffaker, G.J. Salamo, and M.L. Lee, “Tensile GaAs(111) quantum dashes with tunable luminescence below the bulk bandgap”. Appl. Phys. Lett., 105, 071912 (2014).
  12. R.B. Laghumavarapu, M. Sun, P.J. Simmonds, B. Liang, S. Hellstroem, Z. Bittner, S. Polly, S. Hubbard, A.G. Norman, J.-W. Luo, R. Welser, A.K. Sood, and D.L. Huffaker,New quantum dot nanomaterials to boost solar energy harvesting”. SPIE Newsroom. Published Online: January 24, (2014).
  13. P.J. Simmonds, C.D. Yerino, M. Sun, B. Liang, D.L. Huffaker, V.G. Dorogan, Y.I. Mazur, G.J. Salamo, and M.L. Lee, “Tuning quantum dot luminescence below the bulk bandgap using tensile strain”, ACS Nano, 7, 5017-5023 (2013).
  14. M. Sun, P.J. Simmonds, R.B. Laghumavarapu, A. Lin, C.J. Reyner, H.-S. Duan, B. Liang, and D.L. Huffaker, “Effects of GaAs(Sb) cladding layers on InAs/AlAsSb quantum dots”, Appl. Phys. Lett., 102, 023107 (2013) [Press: ]
  15. P.J. Simmonds and M.L. Lee, “Tensile-strained growth on low-index GaAs”, J. Appl. Phys., 112, 054313 (2012).
  16. P.J. Simmonds, R.B. Laghumavarapu, M. Sun, A. Lin, C.J. Reyner, B. Liang, and D.L. Huffaker, “Structural and optical properties of InAs/AlAsSb quantum dots with GaAs(Sb) cladding layers”, Appl. Phys. Lett., 100, 243108 (2012).
  17. P.J. Simmonds and M.L. Lee, “Self-assembly on (111)-oriented III-V surfaces”, Appl. Phys. Lett., 99, 123111 (2011). *
  18. S. Tomasulo, J. Simon, P.J. Simmonds, J. Biagiotti and M.L. Lee, “Molecular beam epitaxy of metamorphic InyGa1-yP solar cells on mixed anion GaAsxP1-x/GaAs graded buffers”, J. Vac. Sci. Technol. B, 29, 03C118 (2011).
  19. J. Simon, P.J. Simmonds, J.M. Woodall and M.L. Lee, “Graphitized carbon on GaAs(100) substrates”, Appl. Phys. Lett., 98, 073113 (2011).
  20. P.J. Simmonds, J. Simon, J.M. Woodall and M.L. Lee, “A molecular beam epitaxy approach to the graphitization of GaAs(001) surfaces”, J. Vac. Sci. Technol. B, 29, 03C103 (2011) – [Press: paper featured in “Beneath the AVS surface”, April 2011].
  21. J. Simon, S. Tomasulo, P.J. Simmonds, M. Romero and M.L. Lee, “Metamorphic GaAsP buffers for growth of wide-bandgap InGaP solar cells”, J. Appl. Phys., 109, 013708 (2011).
  22. Y. Song, P.J. Simmonds and M.L. Lee, “Self-assembled In0.5Ga0.5As quantum dots on GaP(001)”, Appl. Phys. Lett., 97, 223110 (2010). *
  23. P.J. Simmonds and M.L. Lee, “Tensile strained island growth at step-edges on GaAs(110)”, Appl. Phys. Lett., 97, 153101 (2010).
  24. M.L. Lee and P.J. Simmonds, “Tensile strained III-V self-assembled nanostructures on a (110) surface”, Proc. SPIE: Nanoepitaxy, 7768, 776805 (2010).
  25. J. Simon, S. Tomasulo, P.J. Simmonds, M. Romero and M.L. Lee, “Growth of metamorphic InGaP for wide-bandgap photovoltaic junctions by MBE”, MRS Symp. Proc., 1268, EE06-04 (2010).
  26. P.J. Simmonds, S.N. Holmes, H.E. Beere, I. Farrer, F. Sfigakis, D.A. Ritchie and M. Pepper, “Molecular beam epitaxy of high mobility In0.75Ga025As for electron spin transport applications”, J. Vac. Sci. Technol. B, 27, 2066 (2009).
  27. M.J.W. Rodwell, M. Wistey, U. Singisetti, G. Burek, A. Gossard, S. Stemmer, R. Engel-Herbert, Y. Hwang, Y. Zheng, C. Van de Walle, C. Palmstrøm, E. Arkun, P.J. Simmonds, P. Asbeck, Y. Taur, A. Kummel, B. Yu, D. Wang, Y. Yuan, P. McIntyre, J. Harris, M.V. Fischetti and C. Sachs, “Technology development & design for 22 nm InGaAs/InP-channel MOSFETs”, Proc. 20th IEEE IPRM, 620 (2008).
  28. S.N. Holmes, P.J. Simmonds, H.E. Beere, F. Sfigakis, I. Farrer, D.A. Ritchie and M. Pepper, “Bychkov-Rashba dominated band structure in an In0.75Ga0.25As – In0.75Al0.25As device with spin-split carrier densities < 1011 cm-2”, J. Phys.: Condens. Matter, 20, 472207 (2008).
  29. P.J. Simmonds, S.N. Holmes, H.E. Beere and D.A. Ritchie, “Spin-orbit coupling in an In0.52Ga0.48As quantum well with two populated subbands”, J. Appl. Phys., 103, 124506 (2008). *
  30. P.J. Simmonds, F. Sfigakis, H.E. Beere, D.A. Ritchie, M. Pepper, D. Anderson and G.A. Jones, “Quantum transport in In0.75Ga0.25As quantum wires”, Appl. Phys. Lett., 92, 152108 (2008). *
  31. P.J. Simmonds, H.E. Beere, S.N. Holmes and D.A. Ritchie, “Growth-temperature optimization for low carrier-density In0.75Ga0.25As-based HEMTs on InP”, J. Appl. Phys., 102, 083518 (2007).
  32. H.W. Li, B.E. Kardynał, P. See, A.J. Shields, P.J. Simmonds, H.E. Beere and D.A. Ritchie, “Quantum dot resonant tunneling diode for telecom wavelength single photon detection”, Appl. Phys. Lett., 91, 073516 (2007). *
  33. P.J. Simmonds, H.W. Li, H.E. Beere, P. See, A.J. Shields and D.A. Ritchie, “Growth by molecular beam epitaxy of self-assembled InAs quantum dots on InAlAs and InGaAs lattice-matched to InP”, J. Vac. Sci. Technol. B, 25, 1044 (2007). *
  34. H.W. Li, P.J. Simmonds, H.E. Beere, B.E. Kardynał, D.A. Ritchie and A.J. Shields, “Quantum dot resonant tunneling diodes for telecom wavelength single photon detection”, Proc. SPIE, 67660N (2007).
  35. H.W. Li, P.J. Simmonds, H.E. Beere, B.E. Kardynał, P. See, D.A. Ritchie and A.J. Shields, “Optimization of quantum dot resonant tunneling diodes for fiber wavelength detection”, phys. stat. sol. (c), 3, 4035 (2006).

* These papers later selected by Virtual Journal of Nanoscale Science and Technology

Student Research

Student training and education lies at the very center of Dr. Simmonds’ research program. Students at all levels are involved in every aspect of the work including: operating/maintaining the MBE system; designing/synthesizing new nanomaterials; characterizing the physical properties of these nanomaterials; creating theoretical models to understand their physics; building devices that capitalize on their novel behavior; reporting their results in peer-reviewed journals and at academic conferences.

Student qualifications needed
Dr. Simmonds is always happy to speak with undergraduate and graduate students who are interested in working in our group. Although a student’s grades and qualifications are a consideration, perhaps more important is her/his attitude, motivation and desire to search carefully for world-changing solutions to important problems.

What will you learn in our group?
Members of our research group have the opportunity to use cutting-edge scientific equipment to explore new ideas at the very edge of nanoscience. We offer a welcoming and supportive environment in which we encourage each other as we wrestle with difficult problems and explore new ideas. Working closely with both Dr. Simmonds and other members of the group, students gain a wide range of experimental and practical skills while deepening their understanding of concepts in solid-state physics, quantum mechanics, and semiconductor materials.


Office +1 (208) 426-3787
Lab +1 (208) 426-3773
Fax +1 (208) 426-4330

Boise State University
Department of Physics
1910 University Drive
Boise, ID 83725-1570

Office: Multipurpose Classroom Building MPCB-422